Learning Machines 101

Learning Machines 101

Release Date

All Episodes

LM101-086: Ch8: How to Learn the Probability of Infinitely Many Outcomes

This 86th episode of Learning Machines 101 discusses the problem of assigning probabilities to a possibly infinite set of outcomes in a space-time continuum which characterizes our physical world. Such a set is called an "environmental event". The machine learning algorithm uses ...  Afficher plus

LM101-085:Ch7:How to Guarantee your Batch Learning Algorithm Converges

This 85th episode of Learning Machines 101 discusses formal convergence guarantees for a broad class of machine learning algorithms designed to minimize smooth non-convex objective functions using batch learning methods. In particular, a broad class of unsupervised, supervised, a ...  Afficher plus

LM101-084: Ch6: How to Analyze the Behavior of Smart Dynamical Systems

In this episode of Learning Machines 101, we review Chapter 6 of my book "Statistical Machine Learning" which introduces methods for analyzing the behavior of machine inference algorithms and machine learning algorithms as dynamical systems. We show that when dynamical systems ca ...  Afficher plus

LM101-083: Ch5: How to Use Calculus to Design Learning Machines

This particular podcast covers the material from Chapter 5 of my new book "Statistical Machine Learning: A unified framework" which is now available! The book chapter shows how matrix calculus is very useful for the analysis and design of both linear and nonlinear learning machin ...  Afficher plus

LM101-082: Ch4: How to Analyze and Design Linear Machines

The main focus of this particular episode covers the material in Chapter 4 of my new forthcoming book titled "Statistical Machine Learning: A unified framework." Chapter 4 is titled "Linear Algebra for Machine Learning. Many important and widely used machine learning algorithms m ...  Afficher plus